Minimized Photoelectric Losses in Inverted Perovskite Solar Cells via a Discrete Photonic Scaffold

11 February, 2025

Minimizing optical and electronic losses is essential for achieving high-efficiency solar cells. Inverted (p-i-n) perovskite solar cells (PSCs) have made great strides toward commercialization, yet light transmittance losses in the indium tin oxide (ITO) photoanode within the 400–700 nm visible spectrum remain a challenge. Here, we construct a discrete photonic scaffold at the poly(triaryl amine) (PTAA)/perovskite interface using zirconium dioxide (ZrO2) nanoparticles, which enhance the visible transmittance of the ITO/PTAA substrate, form a robust perovskite interface, improve photon harvesting, and facilitate the growth of photoactive (100) and (111) perovskite crystal facets. As a result, the ZrO2-stack devices, with active areas of 0.1 cm2 and 1 cm2, achieve champion power conversion efficiencies (PCEs) of 25.56% and 24.27%, respectively. The devices retain over 92% of their initial PCEs after 1000 h of 1 sun maximum power point tracking.

kaust-logo-small

"KAUST shall be a beacon for peace, hope and reconciliation, and shall serve the people of the Kingdom and the world."

King Abdullah bin Abdulaziz Al Saud, 1924 – 2015

Contact Us

  • 4700 King Abdullah University of Science and Technology

    Thuwal 23955-6900, Kingdom of Saudi Arabia

    Building 5, Level 4

© King Abdullah University of Science and Technology. All rights reserved